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ABSTRACT Bacteria use a variety of strategies to exclude competitors from accessing
resources, including space within a host niche. Because these mechanisms are typically
costly to deploy, they are often tightly regulated for use in environments where the benefits
outweigh the energetic cost. The type VI secretion system (T6SS) is a competitive mechanism
that allows inhibitors to kill competing microbes by physically puncturing and translocating
cytotoxic effectors directly into neighboring competitor cells. Although T6SSs are encoded
in both symbiotic and free-living taxa where they may be actively secreting into the extrac-
ellular milieu during growth in liquid culture, there is little evidence for bacteria engaging
in T6SS-mediated, contact-dependent killing under low-viscosity liquid conditions. Here, we
determined that calcium acts as a pH-dependent cue to activate the assembly of an
antibacterial T6SS in a Vibrio fischeri light organ symbiont in a low-viscosity liquid medium.
Moreover, competing V. fischeri isolates formed mixed-strain aggregates that promoted the
contact necessary for T6SS-dependent elimination of a target population. Our findings
expand our knowledge of V. fischeri T6SS ecology and identify a low-viscosity liquid condition
where cells engage in contact-dependent killing.

IMPORTANCE Microbes deploy competitive mechanisms to gain access to resources such
as nutrients or space within an ecological niche. Identifying when and where these strategies
are employed can be challenging given the complexity and variability of most natural
systems; therefore, studies evaluating specific cues that conditionally regulate interbac-
terial competition can inform the ecological context for such competition. In this work,
we identified a pH-dependent chemical cue in seawater, calcium, which promotes activation
of a contact-dependent interbacterial weapon in the marine symbiont Vibrio fischeri. This
finding underscores the importance of using ecologically relevant salts in growth media
and the ability of bacterial cells to sense and integrate multiple environmental cues to
assess the need for a weapon. Identification of these cues provides insight into the types
of environments where employing a weapon is advantageous to the survival and propaga-
tion of a bacterial population.
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Molecular weapons allow microbes to eliminate competitors of an ecological niche.
Symbiotic microbes often regulate competitive mechanisms in response to environmen-

tal cues, limiting use of these energetically expensive weapons to conditions where the benefits
outweigh the costs (1, 2). The type VI secretion system (T6SS) is a widely distributed interbacte-
rial weapon that can provide a competitive advantage during symbiotic initiation (3–6). T6SSs
are large, proteinaceous structures that act like molecular weapons to deliver effector proteins
directly into competing cells (7). T6SSs require direct contact between competing cells types to
deliver cytotoxic effectors, although contact-independent killing has been recently described
for Yersinia pseudotuberculosis (8). While some taxa exhibit active T6SS protein secretion of
a key T6SS structural protein, hemolysin-coregulated protein (Hcp), in liquid media (9–11),
contact-dependent killing in such conditions has not been described, presumably due to
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the lack of cell-cell contact. Here, we identify a new liquid condition that promotes both
T6SS activity and cell-cell contact using the marine bacterium Vibrio fischeri.

V. fischeri encodes a strain-specific T6SS on chromosome II (T6SS2) that eliminates
competitors in vitro and during symbiosis establishment with Euprymna scolopes squid
(3, 12–14). Juvenile squid hatch with an aposymbiotic light organ that is quickly populated
by free-living V. fischeri. Although not necessary for symbiosis establishment in the absence
of a competitor, strains that encode T6SS2 have a competitive advantage over strains lacking
T6SS2: T6SS21 strains can eliminate T6SS2 strains in cocolonized crypts, resulting in clonally
colonized crypts where the incompatible strain types are spatially separated in different
crypt spaces within the host (3, 13). T6SS2-mediated killing requires two host-specific cues: (i)
high-viscosity liquids and surfaces activate T6SS2 expression and sheath assembly (15), and (ii)
a combination of high-viscosity and neutral-to-acidic pH (7.5 and 6.5) promotes cell-cell con-
tact (15, 16). However, low-viscosity liquid conditions that promote T6SS2 activity have not yet
been identified. Previous work revealed that calcium induces cellulose-dependent aggregation
in low-viscosity liquid (17, 18); therefore, we wondered whether T6SS2 is also active under
these conditions, where cells may come into contact with competitors.

To determine whether calcium impacts T6SS2 activity in liquid, we performed coincubation
assays using two incompatible V. fischeri strains: a target strain, ES114, that does not encode
T6SS2, and an inhibitor strain, ES401, that kills ES114 using T6SS2 (15, 19, 20). Strains were dif-
ferentially tagged with unique antibiotic resistance genes, mixed in a 1:1 ratio, and incubated
for 12 to 15 h with shaking in low-viscosity (centipoise [cP] of 1) liquid Luria-Bertani with
salts (LBS) or tryptone broth-saline (TBS) (18) media without or with 10 mM CaCl2, which is
comparable to the calcium concentration in seawater (21). For each coincubation assay,
CFUs were collected for each strain at the beginning and end of the experiment and used
to calculate the log relative competitive index (RCI) values to evaluate whether ES401 out-
competed ES114. Log RCI values were significantly greater than zero in LBS and TBS with
CaCl2, yet not in media without CaCl2 (Fig. 1A), suggesting that ES401 outcompeted ES114 in
the presence of calcium chloride. When we repeated these experiments with an ES401 T6SS2
mutant, which had a disruption in an essential T6SS2 structural gene (tssF_2/vasA_2), log RCI
values were not significantly greater than zero under any condition and were significantly dif-
ferent from those for the wild-type coincubations (Fig. 1A), suggesting that ES401 used T6SS2
to outcompete ES114 in liquid with calcium chloride. To determine whether calcium, chlo-
ride, or divalent cations generally activate T6SS2 in liquid, we repeated these experiments
in LBS liquid supplemented with 10 mM CaCl2, NaCl, or MgCl2. Log RCI values were not sig-
nificantly greater than zero for NaCl and MgCl2 treatments and were significantly lower than

FIG 1 Calcium activates T6SS2-mediated killing in liquid media. Results of coincubation assays in TBS or LBS
liquid with or without 10 mM CaCl2 (A), LBS liquid with or without 10 mM CaCl2, 10 mM NaCl, or 10 mM MgCl2 (B),
or LBS liquid plus 10 mM CaCl2 with or without 5% polyvinylpyrrolidone (PVP) at pH 7.5 or 8.2 (C). Experiments were
performed with strains ES114 and ES401 wild type (WT; dark gray) or T6SS2 mutant (T62; light gray). Results were
calculated from CFUs and are displayed as log relative competitive index (RCI) values (A and B) or ES114 CFU per
milliliter at 15 h (C). Log RCI values were calculated from the ES401:ES114 ratio of CFUs collected at 12 h (A) or 15 h
(B) after incubation, divided by the ratio of these strains at the beginning of the experiment. Asterisks indicate
significantly different values (Sidak’s multiple-comparison test, P , 0.0001) between coincubations with ES401 WT
versus T62 in a given medium (A and C) or between different conditions (B). Experiments were performed three times,
and combined data are shown (A, n = 12; B and C, n = 9).
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the CaCl2 treatment (Fig. 1B), suggesting that calcium specifically promotes T6SS2 killing in
liquid.

We previously showed that pH controls T6SS killing by ES401 in high-viscosity liquid
(16); therefore, we predicted that pH may similarly affect T6SS activity in low-viscosity
liquid supplemented with calcium. To test our prediction, we coincubated ES114 with ES401
wild type or a T6SS2 mutant (tssF_22) in low-viscosity liquid LBS (1 cP) media supplemented
with 10 mM CaCl2 that was buffered to pH 7.5 or 8.2. The ES114 CFUs recovered at the end
of coincubations were significantly greater with the T6SS2 mutant than in coincubations
with the wild type at pH 7.5, yet they were not significantly different between ES401 strains
at pH 8.2 (Fig. 1C). We observed the same phenotype when we repeated this experiment in
high-viscosity liquid (5% polyvinylpyrrolidone [PVP], cP of 152) (15) medium supplemented
with calcium (Fig. 1C), suggesting that T6SS-dependent killing in both calcium and high-vis-
cosity media is pH dependent.

Given that T6SS2-mediated killing requires cell-cell contact (3, 13), we predicted that calcium
promotes both cell-cell contact and T6SS2 expression in liquid media. We used fluorescence
microscopy to test our prediction that calcium promotes cell-cell contact and T6SS expression.
To determine whether the competing strains made contact in coculture, we visualized differen-
tially tagged ES114 and ES401 strains grown in LBS liquid with 10 mM CaCl2 for 12 h. In LBS liq-
uid without calcium, cells were physically dispersed (15); however, with the addition of calcium
we observed large aggregates (Fig. 2A). In cocultures with wild-type ES401, 95% of the aggre-
gated cells were ES401 (Fig. 2B) and the majority of ES114 cells present were rounded (Fig. 2A),
suggesting they were intoxicated with at least one T6SS effector. In cocultures with the ES401
tssF_2mutant, aggregates contained a relatively equal proportion of ES401 and ES114, 49%
and 51%, respectively (Fig. 2A and B). Aggregates were also observed in monocultures of

FIG 2 Calcium promotes cell-cell contact and sheath assembly in liquid media. (A and C) Representative
fluorescence microscopy images of cocultures of ES401 WT or T62 (magenta) incubated with ES114 (yellow) (A)
or monocultures of each strain in LBS plus 10 mM CaCl2 for 12 h (C). Each experiment was performed three times
with one biological replicate and four fields of view (n = 12). (B) Results from mixed-strain coaggregation assays,
displayed as the percentage of each strain (ES114, yellow; ES401, magenta) within aggregates (top) or in the single-
cell fraction (bottom). (D) Representative GFP-labeled images of ES401 harboring a VipA_2-GFP expression vector
incubated in LBS with 10 mM CaCl2 and supplemented with 0.5 mM isopropyl-b-D-thiogalactopyranoside (IPTG) for 3
h. Percentages are shown for VipA_2-GFP-expressing cells that contained at least one sheath after being incubated in
LBS with or without CaCl2 and supplemented with IPTG for 3 h. The asterisk indicates a significantly different
percentage of cells with sheaths between media types (Student's t test, P , 0.0001). Each experiment was performed
twice with two biological replicates and five fields of view (n = 20). (E) Conceptual model for the conditional
regulation of the V. fischeri T6SS2 in liquid media displayed as a logic gate. The V. fischeri T6SS2 facilitates
interbacterial killing both on surfaces and in liquid environments when specific conditions are met. Either calcium or
high viscosity combined with neutral or acidic pH promote T6SS activity in a liquid environment.
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ES401 (T6SS21) and ES114 (T6SS22) in LBS liquid plus 10 mM CaCl2 (Fig. 2C), suggesting that
calcium promotes aggregation in liquid independently of T6SS2.

Previous work demonstrated that visualizing the percentage of cells with T6SS2 sheaths is a
good indicator of T6SS activation in V. fischeri, because a T6SS2-specific transcriptional reporter
and protein expression are low in LBS liquid, where few sheaths are observed (15). VipA is a sub-
unit of the T6SS sheath and by tagging it with a green fluorescent protein (GFP) molecule, we
could visualize sheath assembly in live cells (Fig. 2D). We visualized T6SS2-GFP sheaths by incu-
bating strain ES401 harboring a VipA_2-GFP expression vector (3) in liquid LBS with or without
10 mM CaCl2 for 3 h. A significantly higher percentage of cells contained sheaths in the pres-
ence of calcium (64%) compared to sheaths in cultures without calcium (14%) (Fig. 2D), indicat-
ing the T6SS2 is active in cells grown in the presence of calcium. Notably, aggregates were not
observed in these experiments, suggesting T6SS is activated directly in response to calcium
rather than via cell-cell contact. Taken together, these data suggest that calcium acts as a cue to
promote T6SS function by activating T6SS sheath assembly and mixed-strain aggregation in liq-
uid media. Thus, our findings provide evidence of contact-dependent T6SS killing in a low-vis-
cosity liquid condition in response to an ecologically relevant cue.

Regulation of T6SSs by environmental conditions has been well established in a number of
free-living and symbiotic taxa. Although calcium and other divalent cations can repress T6SS
expression and/or activity of Salmonella enterica (22) and Pseudomonas aeruginosa PAO1
(23), our findings suggest calcium can also be an ecologically relevant activator of T6SS.
Although our data suggest that V. fischerimay engage in T6SS killing in calcium-containing
low-viscosity liquid environments outside of the E. scolopes light organ, the pH of seawater
(8.2) is not permissive to T6SS-dependent competition. However, it is possible that T6SS2
may be active in marine microhabitats with lower pH (24) and therefore provide V. fischeri
with a competitive advantage in those niches.

Although we did not identify how calcium promotes cell-cell contact in liquid, several
possible mechanisms could explain this observation. First, the contact may be facilitated
by TasL, a newly described putative lipoprotein encoded in the V. fischeri T6SS2 gene
cluster (13). TasL promotes inhibitor-target contact in high-viscosity liquid by forming large,
mixed-strain aggregates and is required for competitor elimination within the E. scolopes
light organ (13). Given that TasL facilitates contact in liquid environments, this protein may play
a role in liquid supplemented with calcium.

Another possibility is that the aggregates observed here require a previously described
polysaccharide. V. fischeri encodes two polysaccharide loci that promote biofilm formation:
bacterial cellulose synthase (bcs) (25, 26) and symbiosis polysaccharide (syp) loci (27, 28).
While little is known about the ecology of cellulose biofilm for V. fischeri, Syp biofilm is neces-
sary for symbiosis establishment with juvenile E. scolopes squid (27, 28). Calcium was recently
identified to promote both bcs-dependent biofilm in wild-type V. fischeri and syp-dependent
biofilm in a binK mutant in liquid (17, 18). Therefore, it is conceivable that the aggregates
observed here may have been due, at least in part, to biofilm.

Conclusions. Here, we have described evidence that calcium promotes T6SS competition
in a low-viscosity liquid environment. Based on these and previous findings, we have expanded
our existing model for conditional regulation of the V. fischeri T6SS2. Our data reveal that a
combination of neutral pH and either low-viscosity liquid with seawater-like concentra-
tions of calcium (10 mM) or host-like, high-viscosity liquid (15, 16) promotes T6SS expres-
sion and cell-cell contact in liquid to enable T6SS2 killing in a liquid environment (Fig. 2E).
These findings show how bacteria sense and integrate multiple cues to evaluate the benefits
of wielding a costly weapon and emphasize the importance of studying bacterial behaviors
under ecologically relevant conditions. Furthermore, these data provide additional evidence
that V. fischerimay use T6SS2 outside of the squid light organ (13).

Methods. See the supplemental material for a description of the methods used for
this observation.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
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